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Abstract. Kolmogorov complexity and algorithmic probability are compared in 
the context of the universal algorithmic intelligence. Accuracy of time series 
prediction based on single best model and on averaging over multiple models is 
estimated. Connection between inductive behavior and multi-model prediction 
is established. Uncertainty as a heuristic for reducing the number of used mod-
els without losses of universality is discussed. The conclusion is made that plu-
rality of models is the essential feature of artificial general intelligence, and this 
feature should not be removed without necessity. 
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1 Introduction 

Solomonoff Algorithmic Probability (ALP) theory of prediction is known to be ideal 
and universal. Unsurprisingly, it became the main theoretical basis for the models of 
artificial general intelligence [1, 2]. However, computing algorithmic probabilities 
implies summation over all possible algorithmic models (programs). Naturally, the 
two-part Minimum Message Length (MML) or Minimum Description Length (MDL) 
principles are adopted instead of ALP while developing practically applicable meth-
ods of machine perception and learning. These principles also rely on the algorithmic 
information theory (namely, on Kolmogorov complexity), but they give criteria for 
selecting single best models in inductive inference tasks. The best model is assumed 
to be the model that minimizes the sum of the complexity of the model, and the length 
of the data encoded given this model. These principles are frequently called informa-
tion-theoretic formalizations of Ockham’s Razor, which simplified formulation states 
that plurality should not be assumed without necessity. The MDL and MML princi-
ples are usually treated as the practical approximations of ALP [3]. Even those 
authors, who utilize ALP in the models of universal agents, refer to Ockham’s Razor 
[1] mixing ALP and MDL in spite of the fact that ALP implies plurality of models. 

Besides the practical arguments some authors also claim that the MML (or MDL) 
principle is much more methodologically appropriate for intelligent agents. In particu-
lar, importance of the two-part coding (lossy compression) is pointed out in [4] in the 



 

context of multi-agent systems (social environments). Indeed, one can agree that 
agents should exchange only the first parts of MML messages (models or regularities) 
with each other, because there is no need to communicate noise. Apparently, social 
communications are better described by the MML principle than by the ALP theory of 
prediction. Even optimal prediction methods should really be based on ALP, it is said 
that ALP gives better results than MML or MDL if many the top models have similar 
quality [2, 4, 5]. Even 10 bit difference between models makes their probabilities 
incomparable. It can be seen that there are serious reasons to give up on ALP. 

On the other hand, there is also the opinion that human brain prefers to describe 
observations in many different ways, and it is unlikely that some single model of the 
world is used. Such redundancy of descriptions contradicts Ockham’s Razor [6]. It is 
also interesting to note that different compositions and mixtures of experts became 
quite popular in the field of pattern recognition. Their efficiency appeared to be 
somewhat surprising, because mixture models are very complex and should be sub-
jected to overlearning as it follows from the MDL (MML) principle. In our opinion, 
these issues can be resolved within ALP. 

In this paper, we analyze differences between algorithmic probability and Kol-
mogorov complexity in the context of the models of universal algorithmic intelligent 
agents. We argue that ALP not only ensures optimal prediction, but also allows for 
some essential features of intelligent behavior. In particular, inductive (or knowledge-
seeking) behavior can naturally emerge only from consideration of many alternative 
models. Of course, the mentioned computational and communicational restrictions are 
valid, but it doesn’t mean that one should simply reduce the number of models taken 
into account. We believe that models should not be just thrown out, but they should 
be united into some sets leading to uncertain models. That is, the notion of uncertainty 
absent in the resource-unlimited universal algorithmic intelligent agents originates 
from the necessity to account for many models while reasoning and communicating 
with limited resources and time. 

These conclusions are illustrated with some particular models of time series 
forecasting and intelligent agent behavior in Markov environment. 

2 Comparison of prediction quality 

Consider the notion of algorithmic probability. The algorithmic probability PALP(x) of 
some string x is defined as: 

 

€ 

PALP (x) = 2− l(q)

q:U(q)=x
∑ , (1) 

where U is the Universal Turing Machine, each q is its program, which produces x 
and has the length l(q). 

At the same time, the Kolmogorov complexity K(x) is defined as: 

 . (2) 



 

Formally, it is obvious that –log2PALP(x)<K(x). However, Kolmogorov complexity 
implies that there is the smallest program, which can be used as the most compact 
description of x and can be sent instead of the original data, while ALP doesn’t pro-
vide us with an effective compression scheme. Thus, Kolmogorov complexity is the 
more natural basis to introduce the two-part coding separating models from noise: 

 , (3) 

where µ is interpreted as the model, and δ is interpreted as noise. 
As the result, one can choose the best model µ yielding the minimum description 

length. This separation can also be performed in the case of ALP, but its meaning will 
be more vague. Actually, it is somewhat heuristic also in the case of Kolmogorov 
complexity, but it appears to be rather natural in each specific case. 

Now, let’s consider separately the task of prediction. Solution of this task can be 
based on the conditional algorithmic probability and the conditional algorithmic com-
plexity defined as: 

 

€ 

PALP (x | y) = 2− l(q)

q:U(qy)=x
∑ , . (4) 

Of course, algorithmically complete solutions are now unachievable both for Kol-
mogorov complexity and ALP. Thus, we compare them on the restricted subset of 
algorithms specified by the dynamical artificial neural networks (DANNs). Each 
DANN can be described by the corresponding system of differential equations: 
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dxi (t)

dt
= f w ji x j (t)
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M

∑
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⎠ 
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where xi are activities of M neurons, wji are connection weights constituting a matrix 
W, and f is an activation function. 

Starting from some initial values xi(0), activities xi(t) will evolve producing some 
functions as an output. One interesting application is the time series forecasting, in 
which the data D={y(t1),…,y(tn)} is given, where the values y(ti)=(y1(ti),…, yN(ti)) of 
the N-dimensional vector are observed at some moments of time ti [0, Tmax]. The 
task is to predict values y(t) for t >Tmax. 

Such connection weights wij and such initial activities xi(0) should be found that 
the activities xi(t) are most precisely correspond to the values yi(t). Naïve approach 
leads to minimization of the mean-square error: 
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E2 =
1
n

y j (ti ) − x j (t i )[ ]
2

j=1

N

∑
i=1

n

∑ . (6) 

The number of neurons M should be not less than the dimension N of the vector y, 
but it can be larger. In this case, additional neurons can be treated as hidden dynamic 
variables. They are not included into the MSE criterion (6). Apparently, increase of 
the number of additional neurons will result in decrease of the MSE as well as in 



 

overfitting. In accordance with the MDL principle, the model complexity should also 
be taken into account in addition to the description length of the data encoded within 
the model that can be estimated as nNlog2E (accurate to a constant). Here, one can see 
benefits of the two-part coding. 

The ANN model description includes information about the number of neurons, es-
tablished connections, their weights, and initial values of activity. Total MDL crite-
rion for the ANN with M neurons and K connections requiring  bits per pa-
rameter can be roughly estimated as: 

  (7) 

To find the best ANN, one should consider and optimize ANNs with different 
number of neurons and connections. In order to reduce computational complexity of 
this process, we utilized an iterative scheme, in which new neurons are consequently 
added and redundant connections are removed if these operations result in reduction 
of the description length criterion (7). We considered and implemented a combination 
of several optimization techniques (stochastic gradient descent, genetic algorithms, 
and simulated annealing) for optimizing ANNs with fixed architecture. 

While searching for the solution with the minimum description length, many other 
ANNs are generated. In any case, extrapolations of the given time series are calcu-
lated using these ANNs. Why don’t we try computing average result of prediction for 
all these ANNs taken with weights proportional to 2–L (actually, ALP implies averag-
ing over probabilities, but here averaging over predictions also works)? We will refer 
to such the plural model as “P-model” (P stands for algorithmic probability). The best 
found model will be referred to as “K-model” (K stands for Kolmogorov complexity). 
Let’s compare prediction precision for K-models and P-models on some specific data. 

Consider the well-known Wolf annual sunspot time series (see [7] as an example 
of application of the MDL-based ANN learning). We used the Wolf numbers till 1979 
as the training sample. The search algorithm was launched for several times. Table 1 
shows the result for 3 best runs (K-models and P-models assigned the same indices 
were obtained during the same runs). MSEint stands for the MSE on the training sam-
ple, MSE9 and MSE22 stand for the prediction MSE for 1980–1988 years and 1980–
2001 years correspondingly. 

Table 1. Comparison of prediction precision for some P-models and K-models 

Model L or –log2P MSEint MSE9 MSE22 
K-model #1 798.9 398 900 4010 
P-model #1 790.6 382 795 3078 
K-model #2 799.0 388 904 3359 
P-model #2 789.6 369 815 2926 
K-model #3 796.7 382 907 3956 
P-model #3 789.4 383 875 3705 

It can be seen that prediction precision of the K-models is usually worse than of the 
corresponding P-models, although the optimization procedure wasn’t specially de-



 

signed to search for alternative models with close weights. Actually, corresponding 
K- and P-models produce functions with similar shape meaning that primarily the best 
K-model and some nearby models influence the P-models. It is interesting to merge 
different P-models (in order to merge two P-models, one should simple calculate av-
eraged prediction using corresponding weights, and sum probabilities of these mod-
els). One can consider even P-models belonging to different model spaces. 

To check this idea the P-model #4 was found using another activation function rep-
resenting another subset of algorithms. This model has –log2P = 784.5; MSEint=204; 
MSE9=834; MSE22=529. Table 2 shows the prediction precision of the consequently 
merged P-models. 

Table 2. MSE values for the merged P-models 

Model MSEint MSE9 MSE22 
P-model #4 204 834 529 
P-model #4+1 204 820 521 
P-model #4+1+2 204 796 510 
P-model #4+1+2+3 205 769 506 

In this case, the final P-model showed the best prediction accuracy. Examples of 
the K- and P-model predictions are given on Fig. 1. 

 
Fig. 1. Initial data (dotted curves) and reconstructed time series with the K-model #1 (left) and 

the merged P-model (right) 

More interesting (but less reproducible) results can be obtained on such non-
stationary data as financial time series. An example of such time series extrapolated 
with three best P-models (found on separate runs of the search algorithm) and the 
merged P-model are shown on Fig. 2. This is the case, when several the top models 
have similar weights, but give absolutely different predictions. 50 points ahead fore-
casting MSE for these models is given in Table 3. 

Table 3. MSE values for the P-models 

Model #1 #2 #3 #1+#2 #1+#2+#3 
MSEint 0.0263 0.0258 0.0270 0.0250 0.0251 
MSE50 0.157 0.264 0.097 0.146 0.067 



 

 

 
Fig. 2. Three initial P-models and the merged P-model (bottom right) 

The shown prediction quality increase for the merged P-models is rather frequent. 
Of course, the prediction quality of a merged model is not always better than the qual-
ity of both models before merging. Sometimes it lies between them meaning that the 
quality of the merged model is worse than the quality of one of the models. However, 
the final P-model is almost always better than the best K-model. This is why different 
“mixtures of experts” in machine learning appeared to be so useful. 

It should be pointed out that this increase of prediction quality is achieved almost 
without additional computation costs. Also, two-part coding was rather naturally used 
with the plural model prediction derived from ALP. At the same time, further usage 
of the plural models can be indeed computationally costly, e.g. in sequential decision 
making or in multi-agent communications. 

3 Inductive behavior 

The disputable question is whether reinforcement learning is the appropriate frame-
work for generally intelligent agents or not. Will the universal agent, which simply 
tries to maximize rewards received from the environment, show all types of behavior 
typical for humans? Here, we don’t try to give a complete answer to this question. 
Instead, we focus on a specific behavior, namely the inductive behavior (knowledge 
seeking or active learning). 

Different authors have considered necessity to extend (or even replace) the reward 
based utility function with the term expressing increase of agent’s knowledge about 
environment. Then, the agent will be curious and will try to obtain new information. 
The reinforcement-learning agent has no direct motivation for inductive behavior. 

Authors of [8] even claim that if this agent is allowed to arbitrarily modify its own 
inputs, it will do so. They call this situation the “delusion box”. That is, the agent will 
prefer to live in illusion maximizing his utility function without obtaining information 



 

about the real world. However, the reinforcement-learning agent will choose to use 
the delusion box only if it will be able to predict that this choice will increase integral 
future reward taking into account predicted lifespan. If the agent is based on ALP, 
there will be models with non-zero probability predicting shorter lifespan in the case 
of the delusion box. Thus, the expected rewards will not be the highest possible, and 
the choice will depend on circumstances. For example, if the agent expects near 
death, it may try to use the delusion box. 

On the other hand, if the agent uses only the best model for prediction, it will im-
mediately use the delusion box (and ignore the real world), when probability of the 
lifespan decrease is lower. Consequently, one may suggest that inductive behavior in 
general can be derived from sequential decision making with ALP-based prediction. 
Indeed, if the agent refines predictions on each step of sequential decision making 
depending on the hypothesized answer of the environment, it will “automatically” 
account for the benefits of knowledge acquisition. Of course, one can also agree that 
“additional” explicit bias towards exploring previously unknown environmental regu-
larities can be a useful heuristic [9]. 

Difference in the agent’s behavior depending on usage of a single or multiple mod-
els can be experimentally checked on the example of the simplest Markov environ-
ment. Let environment be described by some probability distribution P(x'|x, y), where 
x is the previous state of the environment, x' is the current state, and y is the last 
agent’s action. We can even consider fully observable environments. 

The agent tries to estimate the model of the world in the form of the distribution 
P*(x'|x, y) on the base of the history xy≤t. Obviously, the best model will be the model 
with probabilities simply equal to the frequencies of the corresponding transitions 
estimated on the base of the history, if complexities of different distributions P are 
assumed to be equal. When the history is empty, all the models have the same quality. 
Arbitrary model can be chosen depending on implementation details. 

When the agent performed the action y at the state x for the first time, and this ac-
tion leaded to the state x', the best model would contain P*(x'|x, y)=1. Imagine that the 
state x appeared twice, and the agent performed actions y1 and y2 with the results x'1 
and x'2. Obviously, the agent will choose the action that previously leaded to the best 
outcome. Situation will be more complex for sequential decision making, but the 
general result will be the same – the agent will choose the action that simply gave the 
best reinforcement in the past. Of course, the next try of this action in the given situa-
tion can lead to different states, and statistics for this action will be enriched. The 
agent can reject to use the action that seemed to be good on the first try, but appeared 
to be worse later. But this agent will not try such action that leaded to bad states un-
less all the other actions would be even worse. Thus, one can expect that the “single-
model” agent will accumulate very inhomogeneous statistics for different actions. 

On the contrary, for the Solomonoff prediction any distribution P*(x'|x, y) can be 
considered as a possible environment model for any history with some probability 
that can be easily estimated. Difference in probabilities will increase as the history 
length increases, but it will be small for short histories. Because prediction is based on 
averaging over all models, all expected reinforcements will be very similar at first. If 
some action was performed one or few times, its quality will be near average value, 



 

and preferences in actions will change very frequently until statistics for almost all of 
them are gathered. 

Knowledge-seeking is “automatically” modeled in sequential decision making with 
the use of multi-model prediction. Indeed, some “unknown” action can have good 
outcome. In this case, this action will be repeated many times, and summed future 
outcome will be increased. The action can have bad outcome. In this case, this action 
will not be repeated many times, and summed future outcome will decrease only 
slightly. Because these both possibilities for “unknown” action have similar probabili-
ties, it will be better in average to try such action (if there is no well-known action 
that has reliable outcome better than some average value). It can be seen that this 
agent will show knowledge-seeking behavior, when it is not “satisfied”. Of course, it 
may be useful to boost knowledge-seeking behavior (or even make it the main 
“drive”) by modifying the value function, but our goal was to show that this form of 
behavior naturally appears due to the multiplicity of environment models. 

4 Uncertainty 

As it was shown above, it is inadmissible to use the only one best model in AGI. Not 
only is multi-model prediction more accurate, but also it allows for such forms of 
behavior, which are essential for universal intelligence. At the same time, usage of too 
many models is practically impossible in sequential decision making and communica-
tions. Is it possible to reduce computational costs of multi-model approach without 
loosing its important features? We suppose that the number of models should be re-
duced not simply by eliminating worse models, but by uniting them into some sets. 

Let’s divide the whole set of models Q={q: U(q)=x} into finite number of disjoint 
subsets Qi. Thus, one can write 

 

€ 

PALP (x) = 2− l(q)

q∈Q
∑ = 2− l(q)

q∈Qi

∑
Qi

∑ . (8) 

We want to deal with subsets of models without addressing individual models in 
order to reduce complexity of their further usage. The simplest way is to use the best 
model within a subset instead of all models in this subset: 

 

€ 

PALP (x) = 2− l(q)

q∈Qi

∑
Qi

∑ ≥ 2
− min
q∈Qi

l(q)

Qi

∑ ≥ 2
− min
q∈Q

l(q)
= 2− K (x) . (9) 

This will be better than usage of the single best model, but still is not good enough. 
One needs not only to use one representative model instead some subset, but to de-
scribe the structure of this subset in more details. 

To illustrate this idea, we analyze the simplest non-universal, but useful way of en-
riching descriptions of model subsets. Consider the subset, in which all models have 
the structure qj=µπjδj, where µ is their common part (general model), πj are the strings 
of particular parameter values, δj are the strings of deviations of j-th model µπj from 
the data x. One can write 



 

 

€ 

2− l(q)

q∈Qi

∑ = 2− l(µ )− l(π j )− l(δ j )

π jδ j : µπ jδ j∈Qi

∑ = 2− l(µ ) 2− l(π j )− l(δ j )

π jδ j

∑ . (10) 

Because all δj are interpreted as noise, it is not necessary to use them in prediction 
and decision-making. We also don’t want to account for all possible values of πj, but 
we are interested in the distribution: 

 . (11) 

If the set of parameters πj constitute some metric space, one can estimate some sta-
tistical moments of this distribution. In the other case, assuming independence of 
distributions of each sign in πj one can directly estimate these distributions. As the 
result, it is possible to represent the distribution Pµ,x(πj) compactly. Such compact 
representation will contain information about uncertainty in the parameter values π of 
some best model from the subset Qi. 

Usage of such uncertain models allows estimating uncertainty in prediction caused 
by the simple fact that different models in the set Qi produce different outputs 
U(µ{πδ})={x} (of course, the set of predictions {x} cannot be known precisely unless 
all models are explicitly computed). More complex type of uncertainty can be consid-
ered, when one tries to reduce the number of models further uniting subsets Qi con-
taining models with different structures. 

Uncertainty in the predicted x propagates through sequential decision making and 
becomes much larger in future. Obviously, if the agent has such a history that leads to 
models with high uncertainty, it will not be possible to guarantee high future rewards. 
Thus, actions aimed to decrease uncertainty will allow increasing future rewards in 
average. Thus, they can be chosen even in the case, when few models are used in 
sequential decision making, but uncertainty is taken into account. 

In the case of simplest Markov environment, introduction of uncertainty leads to 
bias towards more uniform distribution P*(x'|x, y). Unsurprisingly, experiments show 
that more diverse actions are tried in presence of this bias, while the agent prefers 
exploitation in absence of this bias. The biased agent gains slightly smaller rewards at 
the beginning, but it has some chances to outperform unbiased single-model agent on 
long time intervals. Correct introduction of uncertainty as a heuristic in adoption of 
ALP can hopefully give optimal solution of the “exploration vs. exploitation” prob-
lem. This possibility has not been considered within algorithmic information theory. 

It can be seen that uncertainty should be introduced as a heuristic that helps to 
greatly reduce computational costs of ALP without violating inductive behavior. It is 
frequently said that uncertainty and probability are different categories. However, 
theories of uncertainty usually rely on the combinatorial basis. However, if we follow 
Kolmogorov and Solomonoff, the notion of probability should be inferred from the 
notion of information, which should also have pure combinatorial (algorithmic) basis. 
Solomonoff induction doesn’t include the notion of uncertainty, but it naturally ap-
pears in attempt to reduce the number of used models. Thus, the complete theory of 
uncertainty should be built on the base of the algorithmic information theory. Unfor-
tunately, detailed analysis of this problem goes beyond the scope of the paper. 



 

5 Conclusions 

Some methodological aspects of usage of Kolmogorov complexity and algorithmic 
probability in universal intelligent agents were discussed. At first, the task of time 
series forecasting was considered. The dynamic artificial neural networks were used 
as a subset of algorithmic models. Accuracy of prediction given by the best ANN 
selected on the base of the MDL criterion was compared with accuracy of prediction 
derived from ALP (weighted sum of predictions made by all the models constructed 
during the search was calculated). MSE of the latter kind of prediction appeared to be 
stably lower. Decrease of MSE varied from 10% to 50% depending on data. 

Then, the problem of information-seeking behavior was considered. It was shown 
that such inductive behavior naturally appears in the ALP-based agent, while the “sin-
gle-model” agent will have a strong bias towards exploitation of actions with well-
known good outcome. In order to reduce complexity of usage of multiple models in 
decision making and communications, subsets of models is proposed to replace with 
some “uncertain” models. A theory of uncertainty as one of meta-heuristics meant for 
considerable reduction of computational complexity of ALP without losses of 
universality is to be developed in future. 
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